MathDB
Product of ratios

Source: Central American Olympiad 2006, Problem 6

April 30, 2007
ratiotrigonometryprojective geometrygeometry proposedgeometry

Problem Statement

Let ABCDABCD be a convex quadrilateral. I=ACBDI=AC\cap BD, and EE, HH, FF and GG are points on ABAB, BCBC, CDCD and DADA respectively, such that EFGH=IEF \cap GH= I. If M=EGACM=EG \cap AC, N=HFACN=HF \cap AC, show that AMIMINCN=IAIC.\frac{AM}{IM}\cdot \frac{IN}{CN}=\frac{IA}{IC}.