Source: 2019 Jozsef Wildt International Math Competition-W. 34
May 19, 2020
inequalities
Problem Statement
Let a, b, c be positive real numbers and let m, n(m≥n) be positive integers. Prove thatam+n+bm+n+anbncm−nan−1bn−1cm−n−1+bm+n+cm+n+bncnam−nbn−1bcn−1am−n−1+cm+n+am+n+cnanbm−ncn−1an−1bm−n−1≤abc1