MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2007 Today's Calculation Of Integral
183
Today's calculation of Integral 183
Today's calculation of Integral 183
Source: Tokyo University entrance exam/Science, Problem 2, 2007
February 25, 2007
calculus
integration
limit
trigonometry
calculus computations
Problem Statement
Let
n
≥
2
n\geq 2
n
≥
2
be integer. On a plane there are
n
+
2
n+2
n
+
2
points
O
,
P
0
,
P
1
,
⋯
P
n
O,\ P_{0},\ P_{1},\ \cdots P_{n}
O
,
P
0
,
P
1
,
⋯
P
n
which satisfy the following conditions as follows. [1]
∠
P
k
−
1
O
P
k
=
π
n
(
1
≤
k
≤
n
)
,
∠
O
P
k
−
1
P
k
=
∠
O
P
0
P
1
(
2
≤
k
≤
n
)
.
\angle{P_{k-1}OP_{k}}=\frac{\pi}{n}\ (1\leq k\leq n),\ \angle{OP_{k-1}P_{k}}=\angle{OP_{0}P_{1}}\ (2\leq k\leq n).
∠
P
k
−
1
O
P
k
=
n
π
(
1
≤
k
≤
n
)
,
∠
O
P
k
−
1
P
k
=
∠
O
P
0
P
1
(
2
≤
k
≤
n
)
.
[2]
O
P
0
‾
=
1
,
O
P
1
‾
=
1
+
1
n
.
\overline{OP_{0}}=1,\ \overline{OP_{1}}=1+\frac{1}{n}.
O
P
0
=
1
,
O
P
1
=
1
+
n
1
.
Find
lim
n
→
∞
∑
k
=
1
n
P
k
−
1
P
k
‾
.
\lim_{n\to\infty}\sum_{k=1}^{n}\overline{P_{k-1}P_{k}}.
lim
n
→
∞
∑
k
=
1
n
P
k
−
1
P
k
.
Back to Problems
View on AoPS