MathDB
Today's calculation of Integral 183

Source: Tokyo University entrance exam/Science, Problem 2, 2007

February 25, 2007
calculusintegrationlimittrigonometrycalculus computations

Problem Statement

Let n2n\geq 2 be integer. On a plane there are n+2n+2 points O, P0, P1, PnO,\ P_{0},\ P_{1},\ \cdots P_{n} which satisfy the following conditions as follows. [1] Pk1OPk=πn (1kn), OPk1Pk=OP0P1 (2kn).\angle{P_{k-1}OP_{k}}=\frac{\pi}{n}\ (1\leq k\leq n),\ \angle{OP_{k-1}P_{k}}=\angle{OP_{0}P_{1}}\ (2\leq k\leq n). [2] OP0=1, OP1=1+1n.\overline{OP_{0}}=1,\ \overline{OP_{1}}=1+\frac{1}{n}. Find limnk=1nPk1Pk.\lim_{n\to\infty}\sum_{k=1}^{n}\overline{P_{k-1}P_{k}}.