MathDB
Nice Number Theory problem with |a_k|=1

Source:

September 1, 2010
number theoryequationDivisibilitymodular arithmeticIMO ShortlistIMO Longlist

Problem Statement

Integers a1,a2,...,ana_1, a_2, . . . , a_n satisfy ak=1|a_k| = 1 and k=1nakak+1ak+2ak+3=2, \sum_{k=1}^{n} a_ka_{k+1}a_{k+2}a_{k+3} = 2, where an+j=aja_{n+j} = a_j. Prove that n1992.n \neq 1992.