MathDB
Putnam 2011 B5

Source:

December 5, 2011
PutnamintegrationfunctioninequalitiescalculusSupportvector

Problem Statement

Let a1,a2,a_1,a_2,\dots be real numbers. Suppose there is a constant AA such that for all n,n, (i=1n11+(xai)2)2dxAn.\int_{-\infty}^{\infty}\left(\sum_{i=1}^n\frac1{1+(x-a_i)^2}\right)^2\,dx\le An. Prove there is a constant B>0B>0 such that for all n,n, i,j=1n(1+(aiaj)2)Bn3.\sum_{i,j=1}^n\left(1+(a_i-a_j)^2\right)\ge Bn^3.