MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania Team Selection Test
2000 Romania Team Selection Test
2
ROMANIA 2000 inequality
ROMANIA 2000 inequality
Source: Romanian TST 2000
January 6, 2004
inequalities
inequalities solved
Problem Statement
Let
n
≥
1
n\ge 1
n
≥
1
be a positive integer and
x
1
,
x
2
…
,
x
n
x_1,x_2\ldots ,x_n
x
1
,
x
2
…
,
x
n
be real numbers such that
∣
x
k
+
1
−
x
k
∣
≤
1
|x_{k+1}-x_k|\le 1
∣
x
k
+
1
−
x
k
∣
≤
1
for
k
=
1
,
2
,
…
,
n
−
1
k=1,2,\ldots ,n-1
k
=
1
,
2
,
…
,
n
−
1
. Prove that
∑
k
=
1
n
∣
x
k
∣
−
∣
∑
k
=
1
n
x
k
∣
≤
n
2
−
1
4
\sum_{k=1}^n|x_k|-\left|\sum_{k=1}^nx_k\right|\le\frac{n^2-1}{4}
k
=
1
∑
n
∣
x
k
∣
−
k
=
1
∑
n
x
k
≤
4
n
2
−
1
Gh. Eckstein
Back to Problems
View on AoPS