MathDB
Intersecting Squares

Source:

April 2, 2013
geometry

Problem Statement

The vertex EE of a square EFGHEFGH is at the center of square ABCDABCD. The length of a side of ABCDABCD is 11 and the length of a side of EFGHEFGH is 22. Side EFEF intersects CDCD at II and EHEH intersects ADAD at JJ. If angle EID=60EID=60^\circ, the area of quadrilateral EIDJEIDJ is
<spanclass=latexbold>(A)</span>14<spanclass=latexbold>(B)</span>36<spanclass=latexbold>(C)</span>13<spanclass=latexbold>(D)</span>24<spanclass=latexbold>(E)</span>32<span class='latex-bold'>(A) </span>\dfrac14\qquad<span class='latex-bold'>(B) </span>\dfrac{\sqrt3}6\qquad<span class='latex-bold'>(C) </span>\dfrac13\qquad<span class='latex-bold'>(D) </span>\dfrac{\sqrt2}4\qquad<span class='latex-bold'>(E) </span>\dfrac{\sqrt3}2