Three cubes of volume 1,8 and 27 are glued together at their faces. The smallest possible surface area of the resulting configuration is<spanclass=′latex−bold′>(A)</span>36<spanclass=′latex−bold′>(B)</span>56<spanclass=′latex−bold′>(C)</span>70<spanclass=′latex−bold′>(D)</span>72<spanclass=′latex−bold′>(E)</span>74