MathDB
Finding Strictly Increasing Functions

Source: Romanian District Olympiad 2018 - Grade IX - Problem 1

March 10, 2018
function

Problem Statement

Find all strictly increasing functions f:NNf : \mathbb{N} \to \mathbb{N} such that f(x)+f(y)1+f(x+y)\frac {f(x) + f(y)}{1 + f(x + y)} is a non-zero natural number, for all x,yNx, y\in\mathbb{N}.