MathDB
Today's calculation of Integral 704

Source: 2011 Fukui University entrance exam/Medicine

June 3, 2011
calculusintegrationfunctioninductioncalculus computations

Problem Statement

A function fn(x) (n=0, 1, 2, 3, )f_n(x)\ (n=0,\ 1,\ 2,\ 3,\ \cdots) satisfies the following conditions:
(i) f0(x)=e2x+1f_0(x)=e^{2x}+1.
(ii) fn(x)=0x(n+2t)fn1(t)dt2xn+1n+1 (n=1, 2, 3, ).f_n(x)=\int_0^x (n+2t)f_{n-1}(t)dt-\frac{2x^{n+1}}{n+1}\ (n=1,\ 2,\ 3,\ \cdots).
Find n=1fn(12).\sum_{n=1}^{\infty} f_n'\left(\frac 12\right).