MathDB
Polynomial permutation

Source: Iran TST1 Day1 P3

February 22, 2020
algebrapolynomialIranian TST

Problem Statement

We call a number nn interesting if for each permutation σ\sigma of 1,2,,n1,2,\ldots,n there exist polynomials P1,P2,,PnP_1,P_2,\ldots ,P_n and ϵ>0\epsilon > 0 such that: i)i) P1(0)=P2(0)==Pn(0)P_1(0)=P_2(0)=\ldots =P_n(0) ii)ii) P1(x)>P2(x)>>Pn(x)P_1(x)>P_2(x)>\ldots >P_n(x) for ϵ<x<0-\epsilon<x<0 iii)iii) Pσ(1)(x)>Pσ(2)(x)>>Pσ(n)(x)P_{\sigma (1)} (x)>P_{\sigma (2)}(x)> \ldots >P_{\sigma (n)} (x) for 0<x<ϵ0<x<\epsilon Find all interesting nn.
Proposed by Mojtaba Zare Bidaki