MathDB
2020 BMT Team 23

Source:

January 9, 2022
trigonometryalgebra

Problem Statement

Let 0<θ<2π0 < \theta < 2\pi be a real number for which cos(θ)+cos(2θ)+cos(3θ)+...+cos(2020θ)=0\cos (\theta) + \cos (2\theta) + \cos (3\theta) + ...+ \cos (2020\theta) = 0 and θ=πn\theta =\frac{\pi}{n} for some positive integer nn. Compute the sum of the possible values of n2020n \le 2020.