MathDB
Ratio of lengths of sides

Source:

January 11, 2009
ratio

Problem Statement

A regular hexagon is inscribed in a circle. The ratio of the length of a side of the hexagon to the length of the shorter of the arcs intercepted by the side, is: <spanclass=latexbold>(A)</span> 1:1<spanclass=latexbold>(B)</span> 1:6<spanclass=latexbold>(C)</span> 1:π<spanclass=latexbold>(D)</span> 3:π<spanclass=latexbold>(E)</span> 6:π <span class='latex-bold'>(A)</span>\ 1: 1 \qquad <span class='latex-bold'>(B)</span>\ 1: 6 \qquad <span class='latex-bold'>(C)</span>\ 1: \pi \qquad <span class='latex-bold'>(D)</span>\ 3: \pi \qquad <span class='latex-bold'>(E)</span>\ 6: \pi