MathDB
(a + b + c)(ab + bc+ca) + 3abc>= 4(ab + bc + ca) if ab+bc+ca>= a+b+c

Source: 2014 Belarus TST 2.2

December 30, 2020
algebrainequalities

Problem Statement

Given positive real numbers a,b,ca,b,c with ab+bc+caa+b+cab+bc+ca\ge a+b+c , prove that (a+b+c)(ab+bc+ca)+3abc4(ab+bc+ca).(a + b + c)(ab + bc+ca) + 3abc \ge 4(ab + bc + ca).
(I. Gorodnin)