MathDB
A 15

Source:

May 25, 2007
number theoryleast common multipleDivisibility Theorypen

Problem Statement

Suppose that k2k \ge 2 and n1,n2,,nk1n_{1}, n_{2}, \cdots, n_{k}\ge 1 be natural numbers having the property n2    2n11,n3    2n21,,nk    2nk11,n1    2nk1.n_{2}\; \vert \; 2^{n_{1}}-1, n_{3}\; \vert \; 2^{n_{2}}-1, \cdots, n_{k}\; \vert \; 2^{n_{k-1}}-1, n_{1}\; \vert \; 2^{n_{k}}-1. Show that n1=n2==nk=1n_{1}=n_{2}=\cdots=n_{k}=1.