MathDB
Prove that $S\leq\sum_{i=1}^{4}MA_i\cdot MA_i^{'}$

Source: Moldova TST 2001

August 6, 2023
3D geometry

Problem Statement

Let AiA_i and AiA_i^{'} (i=1,2,3,4)(i=1,2,3,4) be diametrically opposite vertexes of a rectangular cuboid and MM{} a point inside it. Prove that Si=14MAiMAiS\leq\sum_{i=1}^{4}MA_i\cdot MA_i^{'}, where SS{} is the total surface area of the rectangular cuboid.