MathDB
n! + 1 \ge \sum_{j \in J}a_j >\sqrt {n! + (n - 1)n}

Source: 2010 Indonesia TST stage 2 test 4 p4

December 16, 2020
inequalitiesalgebra

Problem Statement

Given a positive integer nn and I={1,2,...,k}I = \{1, 2,..., k\} with kk is a positive integer. Given positive integers a1,a2,...,aka_1, a_2, ..., a_k such that for all iIi \in I: 1ain1 \le a_i \le n and i=1kai2(n!).\sum_{i=1}^k a_i \ge 2(n!). Show that there exists JIJ \subseteq I such that n!+1jJaj>n!+(n1)nn! + 1 \ge \sum_{j \in J}a_j >\sqrt {n! + (n - 1)n}