MathDB
n variables ILL 1987 inequality

Source:

September 5, 2010
inequalitiesinequalities proposed

Problem Statement

Given nn real numbers 0<t1t2tn<10 < t_1 \leq t_2 \leq \cdots \leq t_n < 1, prove that (1tn2)(t1(1t12)2+t2(1t23)2++tn(1tnn+1)2)<1.(1-t_n^2) \left( \frac{t_1}{(1-t_1^2)^2}+\frac{t_2}{(1-t_2^3)^2}+\cdots +\frac{t_n}{(1-t_n^{n+1})^2} \right) < 1.