MathDB
Integer Values in Polynomial

Source:

January 12, 2009
algebrapolynomialinequalities

Problem Statement

Let n n be the number of integer values of x x such that P \equal{} x^4 \plus{} 6x^3 \plus{} 11x^2 \plus{} 3x \plus{} 31 is the square of an integer. Then n n is: <spanclass=latexbold>(A)</span> 4<spanclass=latexbold>(B)</span> 3<spanclass=latexbold>(C)</span> 2<spanclass=latexbold>(D)</span> 1<spanclass=latexbold>(E)</span> 0 <span class='latex-bold'>(A)</span>\ 4 \qquad <span class='latex-bold'>(B)</span>\ 3 \qquad <span class='latex-bold'>(C)</span>\ 2 \qquad <span class='latex-bold'>(D)</span>\ 1 \qquad <span class='latex-bold'>(E)</span>\ 0