MathDB
2016-2017 Fall OMO Problem 25

Source:

November 16, 2016
Online Math Open

Problem Statement

Let X1X2X3X_1X_2X_3 be a triangle with X1X2=4,X2X3=5,X3X1=7,X_1X_2 = 4, X_2X_3 = 5, X_3X_1 = 7, and centroid GG. For all integers n3n \ge 3, define the set SnS_n to be the set of n2n^2 ordered pairs (i,j)(i,j) such that 1in1\le i\le n and 1jn1\le j\le n. Then, for each integer n3n\ge 3, when given the points X1,X2,,XnX_1, X_2, \ldots , X_{n}, randomly choose an element (i,j)Sn(i,j)\in S_n and define Xn+1X_{n+1} to be the midpoint of XiX_i and XjX_j. The value of
i=0(E[Xi+4G2](34)i) \sum_{i=0}^\infty \left(\mathbb{E}\left[X_{i+4}G^2\right]\left(\dfrac{3}{4}\right)^i\right)
can be expressed in the form p+qln2+rln3p + q \ln 2 + r \ln 3 for rational numbers p,q,rp, q, r. Let p+q+r=mn|p| + |q| + |r| = \dfrac mn for relatively prime positive integers mm and nn. Compute 100m+n100m+n.
Note: E(x)\mathbb{E}(x) denotes the expected value of xx.
Proposed by Yang Liu