Let X1X2X3 be a triangle with X1X2=4,X2X3=5,X3X1=7, and centroid G. For all integers n≥3, define the set Sn to be the set of n2 ordered pairs (i,j) such that 1≤i≤n and 1≤j≤n. Then, for each integer n≥3, when given the points X1,X2,…,Xn, randomly choose an element (i,j)∈Sn and define Xn+1 to be the midpoint of Xi and Xj. The value ofi=0∑∞(E[Xi+4G2](43)i)can be expressed in the form p+qln2+rln3 for rational numbers p,q,r. Let ∣p∣+∣q∣+∣r∣=nm for relatively prime positive integers m and n. Compute 100m+n.Note: E(x) denotes the expected value of x.Proposed by Yang Liu