MathDB
Problems
Contests
National and Regional Contests
Romania Contests
District Olympiad
2023 District Olympiad
P1
Integral inequality
Integral inequality
Source: Romanian District Olympiad 2023 12.1
March 11, 2023
real analysis
Integral
inequalities
Problem Statement
Let
f
:
[
−
π
/
2
,
π
/
2
]
→
R
f:[-\pi/2,\pi/2]\to\mathbb{R}
f
:
[
−
π
/2
,
π
/2
]
→
R
be a twice differentiable function which satisfies
(
f
′
′
(
x
)
−
f
(
x
)
)
⋅
tan
(
x
)
+
2
f
′
(
x
)
⩾
1
,
\left(f''(x)-f(x)\right)\cdot\tan(x)+2f'(x)\geqslant 1,
(
f
′′
(
x
)
−
f
(
x
)
)
⋅
tan
(
x
)
+
2
f
′
(
x
)
⩾
1
,
for all
x
∈
(
−
π
/
2
,
π
/
2
)
x\in(-\pi/2,\pi/2)
x
∈
(
−
π
/2
,
π
/2
)
. Prove that
∫
−
π
/
2
π
/
2
f
(
x
)
⋅
sin
(
x
)
d
x
⩾
π
−
2.
\int_{-\pi/2}^{\pi/2}f(x)\cdot \sin(x) \ dx\geqslant \pi-2.
∫
−
π
/2
π
/2
f
(
x
)
⋅
sin
(
x
)
d
x
⩾
π
−
2.
Back to Problems
View on AoPS