MathDB
Integral inequality

Source: Romanian District Olympiad 2023 12.1

March 11, 2023
real analysisIntegralinequalities

Problem Statement

Let f:[π/2,π/2]Rf:[-\pi/2,\pi/2]\to\mathbb{R} be a twice differentiable function which satisfies (f(x)f(x))tan(x)+2f(x)1,\left(f''(x)-f(x)\right)\cdot\tan(x)+2f'(x)\geqslant 1,for all x(π/2,π/2)x\in(-\pi/2,\pi/2). Prove that π/2π/2f(x)sin(x) dxπ2.\int_{-\pi/2}^{\pi/2}f(x)\cdot \sin(x) \ dx\geqslant \pi-2.