MathDB
algebra problem

Source: Netherlands TST for IMO 2017 day 3 problem 2

February 1, 2018
Sequencesalgebra

Problem Statement

let a1,a2,...ana_1,a_2,...a_n a sequence of real numbers such that a1+....+an=0a_1+....+a_n=0. define bi=a1+a2+....aib_i=a_1+a_2+....a_i for all 1in1 \leq i \leq n .suppose bi(aj+1ai+1)0b_i(a_{j+1}-a_{i+1}) \geq 0 for all 1ijn11 \leq i \leq j \leq n-1. Show that max1lnalmax1mnbm\max_{1 \leq l \leq n} |a_l| \geq \max_{1 \leq m \leq n} |b_m|