trigonometryquadraticsrationumber theoryrelatively primetrig identitiesgeometric series
Problem Statement
For π≤θ<2π, letP=21cosθ−41sin2θ−81cos3θ+161sin4θ+321cos5θ−641sin6θ−1281cos7θ+… and
Q=1−21sinθ−41cos2θ+81sin3θ+161cos4θ−321sin5θ−641cos6θ+1281sin7θ+… so that QP=722. Then sinθ=−nm where m and n are relatively prime positive integers. Find m+n.