MathDB
Asymmetrical acyclical inequality

Source: Romania NMO 2015,9th grade,Problem 4

April 25, 2015
inequalitiesalgebra

Problem Statement

Let a,b,c,d0a,b,c,d \ge 0 real numbers so that a+b+c+d=1a+b+c+d=1.Prove that a+(bc)26+(cd)26+(db)26+b+c+d2.\sqrt{a+\frac{(b-c)^2}{6}+\frac{(c-d)^2}{6}+\frac{(d-b)^2}{6}} +\sqrt{b}+\sqrt{c}+\sqrt{d} \le 2.