MathDB
Romania National Olympiad 2010 - Grade XI

Source:

April 10, 2011
linear algebralinear algebra unsolved

Problem Statement

Let A,B,CMn(R)A,B,C\in \mathcal{M}_n(\mathbb{R}) such that ABC=OnABC=O_n and rank B=1\text{rank}\ B=1. Prove that AB=OnAB=O_n or BC=OnBC=O_n.