MathDB
Regular Dodecagon

Source:

March 3, 2010
geometrytrigonometry

Problem Statement

A regular dodecagon (12 12 sides) is inscribed in a circle with radius r r inches. The area of the dodecagon, in square inches, is: <spanclass=latexbold>(A)</span> 3r2<spanclass=latexbold>(B)</span> 2r2<spanclass=latexbold>(C)</span> 3r234<spanclass=latexbold>(D)</span> r23<spanclass=latexbold>(E)</span> 3r23 <span class='latex-bold'>(A)</span>\ 3r^2 \qquad <span class='latex-bold'>(B)</span>\ 2r^2 \qquad <span class='latex-bold'>(C)</span>\ \frac{3r^2 \sqrt{3}}{4} \qquad <span class='latex-bold'>(D)</span>\ r^2 \sqrt{3} \qquad <span class='latex-bold'>(E)</span>\ 3r^2 \sqrt{3}