MathDB
Polynomial Divisibility

Source: 2008 Greek TST,Pr.1

May 25, 2016
algebrapolynomialDivisibility

Problem Statement

Find all possible values of aRa\in \mathbb{R} and nNn\in \mathbb{N^*} such that f(x)=(x1)n+(x2)2n+1+(1x2)2n+1+af(x)=(x-1)^n+(x-2)^{2n+1}+(1-x^2)^{2n+1}+a
is divisible by ϕ(x)=x2x+1\phi (x)=x^2-x+1