MathDB
Trisection points and finding the equation of a line

Source: 1970 AHSME Problem 15

March 24, 2014
analytic geometryarithmetic sequenceAMC

Problem Statement

Lines in the xy-plane are drawn through the point (3,4)(3,4) and the trisection points of the line segment joining the points (4,5)(-4,5) and (5,1).(5,-1). One of these lines has the equation
<spanclass=latexbold>(A)</span>3x2y1=0<spanclass=latexbold>(B)</span>4x5y+8=0<spanclass=latexbold>(C)</span>5x+2y23=0<span class='latex-bold'>(A) </span>3x-2y-1=0\qquad<span class='latex-bold'>(B) </span>4x-5y+8=0\qquad<span class='latex-bold'>(C) </span>5x+2y-23=0\qquad
<spanclass=latexbold>(D)</span>x+7y31=0<spanclass=latexbold>(E)</span>x4y+13=0<span class='latex-bold'>(D) </span>x+7y-31=0\qquad <span class='latex-bold'>(E) </span>x-4y+13=0