MathDB
JBMO 2016 Problem 2

Source:

June 26, 2016
inequalitiesJBMO

Problem Statement

Let a,b,ca,b,c be positive real numbers.Prove that
8(a+b)2+4abc+8(b+c)2+4abc+8(a+c)2+4abc+a2+b2+c28a+3+8b+3+8c+3\frac{8}{(a+b)^2 + 4abc} + \frac{8}{(b+c)^2 + 4abc} + \frac{8}{(a+c)^2 + 4abc} + a^2 + b^2 + c ^2 \ge \frac{8}{a+3} + \frac{8}{b+3} + \frac{8}{c+3}.