MathDB
S_k=1^k+2^k+...+(p-1)^k

Source: Moldova TST 2012

March 9, 2023
number theory

Problem Statement

Let p5p\geq5 be a prime and Sk=1k+2k+...+(p1)k,kN.S_k=1^k+2^k+...+(p-1)^k,\forall k\in\mathbb{N}. Prove that there is an infinity of numbers nNn\in\mathbb{N} such that p3p^3 divides SnS_n and p p divides Sn1S_{n-1} and Sn2.S_{n-2}.