MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova Team Selection Test
2012 Moldova Team Selection Test
8
S_k=1^k+2^k+...+(p-1)^k
S_k=1^k+2^k+...+(p-1)^k
Source: Moldova TST 2012
March 9, 2023
number theory
Problem Statement
Let
p
≥
5
p\geq5
p
≥
5
be a prime and
S
k
=
1
k
+
2
k
+
.
.
.
+
(
p
−
1
)
k
,
∀
k
∈
N
.
S_k=1^k+2^k+...+(p-1)^k,\forall k\in\mathbb{N}.
S
k
=
1
k
+
2
k
+
...
+
(
p
−
1
)
k
,
∀
k
∈
N
.
Prove that there is an infinity of numbers
n
∈
N
n\in\mathbb{N}
n
∈
N
such that
p
3
p^3
p
3
divides
S
n
S_n
S
n
and
p
p
p
divides
S
n
−
1
S_{n-1}
S
n
−
1
and
S
n
−
2
.
S_{n-2}.
S
n
−
2
.
Back to Problems
View on AoPS