MathDB
FE integers

Source: 1996 Korea National Math olympiad #2

March 22, 2018
functional equationalgebranumber theoryfunction

Problem Statement

Let the f:NNf:\mathbb{N}\rightarrow\mathbb{N} be the function such that (i) For all positive integers n,n, f(n+f(n))=f(n)f(n+f(n))=f(n) (ii) f(no)=1f(n_o)=1 for some n0n_0
Prove that f(n)1.f(n)\equiv 1.