MathDB
Today's calculation of Integral 695

Source: 2011 Tokyo Medical and Dental University entrance exam

May 7, 2011
calculusintegrationlimitlogarithmscalculus computations

Problem Statement

For a positive integer nn, let
Sn=011(x)n1+xdx,  Tn=k=1n(1)k1k(k+1)S_n=\int_0^1 \frac{1-(-x)^n}{1+x}dx,\ \ T_n=\sum_{k=1}^n \frac{(-1)^{k-1}}{k(k+1)}
Answer the following questions:
(1) Show the following inequality.
Sn0111+xdx1n+1\left|S_n-\int_0^1 \frac{1}{1+x}dx\right|\leq \frac{1}{n+1}
(2) Express Tn2SnT_n-2S_n in terms of nn.
(3) Find the limit limnTn.\lim_{n\to\infty} T_n.