MathDB
Sequence a with product 1

Source: 2014 CMO #1

May 11, 2014
inductioninequalitiesinequalities proposed

Problem Statement

Let a1,a2,,ana_1,a_2,\dots,a_n be positive real numbers whose product is 11. Show that the sum a11+a1+a2(1+a1)(1+a2)+a3(1+a1)(1+a2)(1+a3)++an(1+a1)(1+a2)(1+an)\textstyle\frac{a_1}{1+a_1}+\frac{a_2}{(1+a_1)(1+a_2)}+\frac{a_3}{(1+a_1)(1+a_2)(1+a_3)}+\cdots+\frac{a_n}{(1+a_1)(1+a_2)\cdots(1+a_n)} is greater than or equal to 2n12n\frac{2^n-1}{2^n}.