MathDB
Problems
Contests
International Contests
Balkan MO
1984 Balkan MO
1
classic application of jensen
classic application of jensen
Source: bmo 1984
April 23, 2007
inequalities
function
algebra
n-variable inequality
calculus
Problem Statement
Let
n
≥
2
n \geq 2
n
≥
2
be a positive integer and
a
1
,
…
,
a
n
a_{1},\ldots , a_{n}
a
1
,
…
,
a
n
be positive real numbers such that
a
1
+
.
.
.
+
a
n
=
1
a_{1}+...+a_{n}= 1
a
1
+
...
+
a
n
=
1
. Prove that:
a
1
1
+
a
2
+
⋯
+
a
n
+
⋯
+
a
n
1
+
a
1
+
a
2
+
⋯
+
a
n
−
1
≥
n
2
n
−
1
\frac{a_{1}}{1+a_{2}+\cdots +a_{n}}+\cdots +\frac{a_{n}}{1+a_{1}+a_{2}+\cdots +a_{n-1}}\geq \frac{n}{2n-1}
1
+
a
2
+
⋯
+
a
n
a
1
+
⋯
+
1
+
a
1
+
a
2
+
⋯
+
a
n
−
1
a
n
≥
2
n
−
1
n
Back to Problems
View on AoPS