MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2010 Today's Calculation Of Integral
632
Today's calculation of Integral 632
Today's calculation of Integral 632
Source:
July 11, 2010
calculus
integration
limit
trigonometry
floor function
ceiling function
calculus computations
Problem Statement
Find
lim
n
→
∞
∫
0
1
∣
sin
n
x
∣
3
d
x
(
n
=
1
,
2
,
⋯
)
.
\lim_{n\to\infty} \int_0^1 |\sin nx|^3dx\ (n=1,\ 2,\ \cdots).
lim
n
→
∞
∫
0
1
∣
sin
n
x
∣
3
d
x
(
n
=
1
,
2
,
⋯
)
.
2010 Kyoto Institute of Technology entrance exam/Textile, 2nd exam
Back to Problems
View on AoPS