MathDB
Different relation in a triangle

Source: IV Caucasus Mathematic Olympiad

April 7, 2019
trigonometryLaw of Sinesgeometry

Problem Statement

Given a triangle ABCABC with BC=aBC=a, CA=bCA=b, AB=cAB=c, BAC=α\angle BAC = \alpha, CBA=β\angle CBA = \beta, ACB=γ\angle ACB = \gamma. Prove that asin(βγ)+bsin(γα)+csin(αβ)=0. a \sin(\beta-\gamma) + b \sin(\gamma-\alpha) +c\sin(\alpha-\beta) = 0.