If AB and CD are perpendicular diameters of circle Q, P in AQ, and ∡QPC=60∘, then the length of PQ divided by the length of AQ is
[asy]
size(200);
defaultpen(linewidth(0.7)+fontsize(10));
pair A=(-1,0), B=(1,0), C=(0,1), D=(0,-1), Q=origin, P=(-0.5,0);
draw(P--C--D^^A--B^^Circle(Q,1));
label("A", A, W);
label("B", B, E);
label("C", C, N);
label("D", D, S);
label("P", P, S);
label("Q", Q, SE);
label("60∘", P+0.0.5*dir(30), dir(30));[/asy]
<spanclass=′latex−bold′>(A)</span>23<spanclass=′latex−bold′>(B)</span>33<spanclass=′latex−bold′>(C)</span>22<spanclass=′latex−bold′>(D)</span>21<spanclass=′latex−bold′>(E)</span>32