MathDB
Length Chasing

Source:

December 30, 2005
ratio

Problem Statement

If ABAB and CDCD are perpendicular diameters of circle QQ, PP in AQ\overline{AQ}, and QPC=60\measuredangle QPC = 60^\circ, then the length of PQPQ divided by the length of AQAQ is [asy] size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair A=(-1,0), B=(1,0), C=(0,1), D=(0,-1), Q=origin, P=(-0.5,0); draw(P--C--D^^A--B^^Circle(Q,1)); label("AA", A, W); label("BB", B, E); label("CC", C, N); label("DD", D, S); label("PP", P, S); label("QQ", Q, SE); label("6060^\circ", P+0.0.5*dir(30), dir(30));[/asy] <spanclass=latexbold>(A)</span> 32<spanclass=latexbold>(B)</span> 33<spanclass=latexbold>(C)</span> 22<spanclass=latexbold>(D)</span> 12<spanclass=latexbold>(E)</span> 23 <span class='latex-bold'>(A)</span> \ \frac{\sqrt{3}}{2} \qquad <span class='latex-bold'>(B)</span> \ \frac{\sqrt{3}}{3} \qquad <span class='latex-bold'>(C)</span> \ \frac{\sqrt{2}}{2} \qquad <span class='latex-bold'>(D)</span> \ \frac12 \qquad <span class='latex-bold'>(E)</span> \ \frac23