MathDB
Greece TST 1998 Q1

Source:

March 11, 2013
inequalities unsolvedinequalities

Problem Statement

If x,y,z>0,k>2x,y,z > 0, k>2 and a=x+ky+kz,b=kx+y+kz,c=kx+ky+za=x+ky+kz, b=kx+y+kz, c=kx+ky+z, show that xa+yb+zc32k+1\frac{x}{a} + \frac{y}{b} + \frac{z}{c} \ge \frac{3}{2k+1}.