MathDB
JBMO Shortlist 2022 A6

Source: JBMO Shortlist 2022

June 26, 2023
InequalityJuniorBalkanshortlistalgebraabsolute value

Problem Statement

Let a,b,a, b, and cc be positive real numbers such that a2+b2+c2=3a^2 + b^2 + c^2 = 3. Prove that a2+b22ab+b2+c22bc+c2+a22ca+2(ab+bc+ca)35+(ab)(bc)(ca).\frac{a^2 + b^2}{2ab} + \frac{b^2 + c^2}{2bc} + \frac{c^2 + a^2}{2ca} + \frac{2(ab + bc + ca)}{3} \ge 5 + |(a - b)(b - c)(c - a)|.