MathDB
Product equals to 1

Source: Moldova TST 2011, day 1, problem 2

March 8, 2011
inequalitiesfunctioninequalities unsolved

Problem Statement

Let x1,x2,,xnx_1, x_2, \ldots, x_n be real positive numbers such that x1x2xn=1x_1\cdot x_2\cdots x_n=1. Prove the inequality 1x1(x1+1)+1x2(x2+1)++1xn(xn+1)n2\frac1{x_1(x_1+1)}+\frac1{x_2(x_2+1)}+\cdots+\frac1{x_n(x_n+1)}\geq\frac n2