MathDB
Escalator

Source:

January 11, 2009

Problem Statement

An escalator (moving staircase) of n n uniform steps visible at all times descends at constant speed. Two boys, A A and Z Z, walk down the escalator steadily as it moves, A A negotiating twice as many escalator steps per minute as Z Z. A A reaches the bottom after taking 27 27 steps while Z Z reaches the bottom after taking 18 18 steps. Then n n is: <spanclass=latexbold>(A)</span> 63<spanclass=latexbold>(B)</span> 54<spanclass=latexbold>(C)</span> 45<spanclass=latexbold>(D)</span> 36<spanclass=latexbold>(E)</span> 30 <span class='latex-bold'>(A)</span>\ 63 \qquad <span class='latex-bold'>(B)</span>\ 54 \qquad <span class='latex-bold'>(C)</span>\ 45 \qquad <span class='latex-bold'>(D)</span>\ 36 \qquad <span class='latex-bold'>(E)</span>\ 30