MathDB
Orthocenter and Circumcircles

Source: 0

April 23, 2009
geometrycircumcircleperimeterratiotrigonometry

Problem Statement

In an acute triangle ABC ABC, let D D be a point on [AC] \left[AC\right] and E E be a point on [AB] \left[AB\right] such that \angle ADB\equal{}\angle AEC\equal{}90{}^\circ. If perimeter of triangle AED AED is 9, circumradius of AED AED is 95 \frac{9}{5} and perimeter of triangle ABC ABC is 15, then BC \left|BC\right| is
<spanclass=latexbold>(A)</span> 5<spanclass=latexbold>(B)</span> 245<spanclass=latexbold>(C)</span> 6<spanclass=latexbold>(D)</span> 8<spanclass=latexbold>(E)</span> 485<span class='latex-bold'>(A)</span>\ 5 \qquad<span class='latex-bold'>(B)</span>\ \frac{24}{5} \qquad<span class='latex-bold'>(C)</span>\ 6 \qquad<span class='latex-bold'>(D)</span>\ 8 \qquad<span class='latex-bold'>(E)</span>\ \frac{48}{5}