MathDB
3(AM^2 + B'P^2 + CN^2)>=2D'B^2, cube if (2019 Romania District VIII p2)

Source:

May 23, 2020
parallelepipedgeometry3D geometrycubegeometric inequality

Problem Statement

Let ABCDABCDABCDA'B'C'D' be a rectangular parallelepiped and M,N,PM,N, P projections of points A,CA, C and BB' respectively on the diagonal BDBD'.
a) Prove that BM+BN+BP=BDBM + BN + BP = BD'.
b) Prove that 3(AM2+BP2+CN2)2DB23 (AM^2 + B'P^2 + CN^2)\ge 2D'B^2 if and only if ABCDABCDABCDA'B'C'D' is a cube.