MathDB
Bosnia and Herzegovina JBMO TST 2016 Problem 4

Source: Bosnia and Herzegovina Junior Balkan Mathematical Olympiad TST 2016

September 16, 2018
algebrainequalities

Problem Statement

Let xx, yy and zz be positive real numbers such that xy+yz+zx=3\sqrt{xy} + \sqrt{yz} + \sqrt{zx} = 3. Prove that x3+x+y3+y+z3+z6(x+y+z)\sqrt{x^3+x} + \sqrt{y^3+y} + \sqrt{z^3+z} \geq \sqrt{6(x+y+z)}