MathDB
1994 AMC 12 #20

Source:

December 30, 2011
ratioquadraticsgeometric sequencearithmetic sequenceAMC

Problem Statement

Suppose x,y,zx,y,z is a geometric sequence with common ratio rr and xyx \neq y. If x,2y,3zx, 2y, 3z is an arithmetic sequence, then rr is
<spanclass=latexbold>(A)</span> 14<spanclass=latexbold>(B)</span> 13<spanclass=latexbold>(C)</span> 12<spanclass=latexbold>(D)</span> 2<spanclass=latexbold>(E)</span> 4 <span class='latex-bold'>(A)</span>\ \frac{1}{4} \qquad<span class='latex-bold'>(B)</span>\ \frac{1}{3} \qquad<span class='latex-bold'>(C)</span>\ \frac{1}{2} \qquad<span class='latex-bold'>(D)</span>\ 2 \qquad<span class='latex-bold'>(E)</span>\ 4