MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Soros Olympiad in Mathematics
V Soros Olympiad 1998 - 99 (Russia)
11.1
sin(2log_2 x)+tg(3log_2 x)=sin6+tg9 (V Soros Olympiad 1998-99 Round 3 11.1)
sin(2log_2 x)+tg(3log_2 x)=sin6+tg9 (V Soros Olympiad 1998-99 Round 3 11.1)
Source:
May 26, 2024
algebra
trigonometry
logarithms
Problem Statement
Find at least one root of the equation
sin
(
2
log
2
x
)
+
t
g
(
3
log
2
x
)
=
sin
6
+
t
g
9
\sin(2 \log_2 x) + tg(3\log_2 x) = \sin6+tg9
sin
(
2
lo
g
2
x
)
+
t
g
(
3
lo
g
2
x
)
=
sin
6
+
t
g
9
less than
0.01
0.01
0.01
.
Back to Problems
View on AoPS