MathDB
Inequality with square roots

Source: 2022 Israel National Olympiad P6

December 16, 2022
inequalities

Problem Statement

Let x,y,zx,y,z be non-negative real numbers. Prove that:
(2x+y)(2x+z)+(2y+x)(2y+z)+(2z+x)(2z+y)\sqrt{(2x+y)(2x+z)}+\sqrt{(2y+x)(2y+z)}+\sqrt{(2z+x)(2z+y)}\geq (x+2y)(x+2z)+(y+2x)(y+2z)+(z+2x)(z+2y).\geq \sqrt{(x+2y)(x+2z)}+\sqrt{(y+2x)(y+2z)}+\sqrt{(z+2x)(z+2y)}.