MathDB
Functional Equation with f(2n+1)=2f(n) and f(2n)=2f(n)+1

Source: India Postals Set 3

November 7, 2015
algebrafunctional equation

Problem Statement

Let f:N{0}N{0}f:\mathbb{N} \cup \{0\} \to \mathbb{N} \cup \{0\} be defined by f(0)=0f(0)=0, f(2n+1)=2f(n)f(2n+1)=2f(n) for n0n \ge 0 and f(2n)=2f(n)+1f(2n)=2f(n)+1 for n1n \ge 1
If g(n)=f(f(n))g(n)=f(f(n)), prove that g(ng(n))=0g(n-g(n))=0 for all n0n \ge 0.