MathDB
2014 Japan Mathematical Olympiad Finals Problem 5

Source:

February 16, 2014
inequalitiesinequalities proposed

Problem Statement

Find the maximum value of real number kk such that a1+9bc+k(bc)2+b1+9ca+k(ca)2+c1+9ab+k(ab)212\frac{a}{1+9bc+k(b-c)^2}+\frac{b}{1+9ca+k(c-a)^2}+\frac{c}{1+9ab+k(a-b)^2}\geq \frac{1}{2} holds for all non-negative real numbers a, b, ca,\ b,\ c satisfying a+b+c=1a+b+c=1.