MathDB
2019 CNMO P3

Source: China North MO 2019, Problem 3

February 21, 2020
algebra

Problem Statement

n(n2)n(n\geq2) is a given intenger, and a1,a2,...,ana_1,a_2,...,a_n are real numbers. For any i=1,2,,ni=1,2,\cdots ,n, ai1,ai+2=ai2+aiai+1+1.a_i\neq -1,a_{i+2}=\frac{a_i^2+a_i}{a_{i+1}+1}. Prove: a1=a2==ana_1=a_2=\cdots=a_n. (Note: an+1=a1,an+2=a2a_{n+1}=a_1,a_{n+2}=a_2.)